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Abstract-- This paper introduces a model-based approach 

for testing the robustness of computer vision solutions with 
respect to a given task or application.  The work is 
motivated by the observation that today testing computer 
vision components is mostly a manual and heuristic task. In 
general, recorded test images are used to assess whether the 
solution yields the correct output. This approach suffers 
from at least two deficiencies: (i) test data often need to be 
manually annotated with the expected output (“ground 
truth”), which is expensive and subjective; (ii) it is hard to 
assure that all situational aspects are included (e.g. 
backlight or occlusions) that can hamper the correct 
operation of the vision component. Our approach enables to 
generate test data with a measurable coverage of optical 
situations typical and critical for a given application, and 
also generates correct ground truth with no manual effort. 
 

Index Terms--computer vision testing, robustness testing, 
model-based test case generation, validation  

I.  INTRODUCTION 

Image processing techniques used in vision sensors are a 
crucial component for enabling autonomous systems to 
solve basic tasks of manipulating and navigating in an 
environment. In scenarios where the systems have to 
coexist with humans (e.g. robots taking care of the elder 
or autonomous cars in public traffic) all of their 
components should be certified to ensure that they 
operate safely. However, still today no general 
methodology exists for testing the robustness of vision 
components with a measurable coverage of scenes and 
situational aspects typical and critical for a given 
application. These coverage metrics are crucial to allow 
the certification of vision components. Public authorities 
require for the commercial application of safety-critical 
systems their safety certification. Due to the current lack 
of viable means to certify visual components or whole 
systems that depend on such components, the broad 
usage of autonomous systems in our everyday life is still 
highly restricted and hampered. It is thus clear that 
advances in methodology for the certification of vision 
components at this stage are as important to its 
development as improving the robustness of vision 
components and algorithms themselves. 
When assessing the quality of a robot vision component 
(system under test; SUT) it is less an issue whether it 
produces the intended result; e.g. it is easy to check 
whether an edge detection algorithm actually outputs 
edges. It is also less complicated as conventional V&V 
techniques applicable to generic algorithms and systems 
can be used for the verification of vision algorithm 

implementation just as well (e.g. checking for the absence 
of faults that could lead to access violation, deadlock, or 
timeouts). The main question is how robust a solution is, 
i.e. how well it copes with the huge number of challenges 
present in the input data, e.g. shadows, reflections, 
occlusions, as well as artifacts emanating in the sensor, 
e.g. thermal noise – which we call criticalities. 
Here the vision algorithm presents a very different 
challenge than the generic algorithm case. This is due to 
the immense number of possible different input images 
and the hard task of finding equivalence classes among 
images. For instance, with a given set of images it is hard 
to come up with an equivalence class that shows blue cars 
or no trees. 
Today, in most cases recorded test images are used for 
validation from two kinds of sources: 
 On the one side, there exist a lot of publicly available 
data sets (e.g. the Brodatz texture album1, the Middlebury 
data sets2 or the KITTI Vision Benchmark Suite3 of 
stereo images for disparity map testing, or the 
CAVIAR4and “Imageparsing.com” (IP)5 data for indoor 
person tracking). In general, such test sets do not address 
a certain application. They are primarily used for 
benchmarking rather than for assessing application 
specific robustness. But even if they are application 
specific (e.g. the Color FERET Database, USA6 for face 
recognition), they do not give an objective measure of the 
covered criticalities. 
 On the other side, test data is recorded especially for a 
given application. For instance, in the course of the ECV 
[7] project about 600.000 images were recorded for the 
testing of automatic plant and weed localization. For the 
quality assessment of welding robots [8], about 100.000 
images were recorded. Despite their large number, a 
measurable coverage of criticalities is not available.  
Finally, the expected output (or ground truth, GT) needs 
to be provided for the test data, in order to assess the 
SUTs response on the test input. This is usually done 
manually, which is expensive and at least subjective if 
not error prone. For instance, for the 60 test images used 
for comparing edge detectors in ([1]), several experts 
generated the GT manually, with clearly different results 
(see Fig. 1) and corresponding different assessments of 
the tested algorithms. 
                                                           

1 http://www.ux.uis.no/~tranden/brodatz.html 
2 http://vision.middlebury.edu/stereo/ 
3 http://www.cvlibs.net/datasets/kitti/ 
4 http://homepages.inf.ed.ac.uk/rbf/CAVIAR/ 
5 http://www.imageparsing.com/frame/MainShow1.html 
6 http://face.nist.gov/colorferet/ 



 

 

 

Fig. 1. Variation example in GT specified manually by two different 
persons. From ([1]) 

In order to overcome these deficiencies, we developed an 
approach for generating test data (both stimuli, i.e. 
images, and expected responses, i.e. GT) from models. 
This approach called VITRO (VIson Testing for 
Robustness) is justified by a number of additional 
observations: 

 Computer graphics has reached a maturity 
status that allows to render realistic images; 

 Criticalities can be included explicitly in 
generated data; 

 Scenes can be created which would be too 
difficult or dangerous to be arranged in 
reality. 

The resulting test data set should contain little 
redundancy and a measurable amount of domain as well 
as criticality coverage. 
In the next section, this approach is outlined, while 
section II.  presents VITRO, our new approach for 
model-based test case generation. Section  III.  
contains some first preliminary results. Finally Section 
IV.   contains a summary and some outlook. 

II.  THE VITRO APPROACH 

 

A.  General Approach 

The VITRO model-based test case generation process for 
computer vision is performed in these steps: 

1. A domain analysis identifies objects that can 
appear in scenarios of the given application, 
together with their properties and 
relationships; all this information is specified 
in the so-called domain model. 

2. Criticalities that should be included in the test 
data are either derived from the domain 
analysis, and/or selected from a catalogue of 
criticalities. 

3. 3D-scenes are automatically derived from the 
domain model such that both the domain 
space and the criticalities are covered. 

4. Images are rendered from 3D-scenes and 
characterizations of the rendered images are 
computed. 

5. The images are clustered according to the 
characterization vector and only the central 
representatives of each cluster are used as test 
data to minimize redundancy 

6.  GT and high quality renderings are generated 
for the representatives, camera effects are 
added by a post-processing step. 
 

Figure Fig. 2 illustrates this process. The individual 
ingredients and steps are described in the following 
chapters. 
 

         

Fig. 2. Test case generation process 

B.  Domain Model 

The domain model captures all aspects and information 
about the targeted application domain that are relevant for 
test image generation. The act of creating a specific 
domain model is called domain analysis. The domain 
model includes: 

 Objects and their categories. For instance, 
objects and categories typical for an indoor 
application in home kitchens are: stoves, 
sideboards, tables, chairs, dishes, cups, pots, 
lamps, coffee machines, towels, doors, windows 
etc. 

 Object properties specify shape and size, 
perhaps also variability-aspects (e.g. whether the 
object is flexible, and to what degree), color, 
texture, transparency, reflectance etc. 
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 Illumination. The light emitted from light 
sources has to be specified with respect to 
intensity, color, and distribution of light in 
different directions. Light sources, which can be 
seen by the SUT, have additionally to be 
modeled as objects. 

 Media properties. If media such as air or water 
can influence the visual appearance of scenes, 
they have to be included in the domain model, 
characterized by properties such as dimming 
factor – e.g. fog, refraction index, or embedded 
particles – e.g. rain or snow.  

 Relationships and constraints. Relationships 
describe how two or more objects are related to 
each other, e.g. “lid A belongs to pot B”. 
Constraints place restrictions on objects and 
properties, e.g. that cups are placed with their 
bottom plane on horizontal surfaces, that chairs 
are aside the table, or that an analogue clock 
always has one hour hand and one minute hand, 
and optionally one additional second hand. A 
further aspect would be behavior, addressing 
motion and interactions. Behavior introduces the 
complex element of timing and conditional 
sequences, which are neglected during the 
course of this work, but will be addressed in 
future work. 

The domain model is encoded as XML files in order to 
benefit from the huge amount of standardized tools. It is 
extensively using the xml-specifications of xinclude7, 
xpath 8 , and some xslt 9  transformations.  
xinclude supports model reuse and thus helps to 
reduce the high costs of domain model specification. 
Objects geometry and other properties, e.g. textures, are 
encoded using encodings well known in computer 
graphics, e.g. COLLADA 10 . Finally, so-called object 
generators are used to represent “generic objects” of a 
certain kind. Controlled by a rather small number of 
parameters, they allow generate a large variety of similar 
objects, e.g. cups or clouds. 

C.  Criticalities 

In order to identify as many potential criticalities as 
possible, a so-called “CV HAZOP” has been carried out. 
For that purpose, a hazard analysis technique proven by 
the V&V community called HAZOP [5] was adapted by 
extending the set of usual guidewords with those that 
were considered appropriate (e.g. spatial (a)periodic) and 
applied to the generic vision algorithm. The “system” – 
including visible objects, light sources, media (e.g. air 
and its pollution), and the sensor (optics and recoding 
unit) – was modeled by an information-oriented 
approach. See [6] for a thorough description of this work 
including the complete resulting list of identified 
criticalities. 

                                                           
7 http://www.w3.org/TR/xinclude/ 
8 http://www.w3.org/TR/xpath/ 
9 http://www.w3.org/TR/xslt/ 
10 http://www.khronos.org/collada/ 

More than one thousand visual “criticalities” (i.e. 
situations and effects that can reduce the output quality of 
a CV algorithm) were identified and collected in a 
catalogue. Examples are “mirrors fake additional light 
sources” or “one object is split into multiple objects 
(fragments) because parts of the object are covered by a 
different object or are outside of the view”. Experts from 
Siemens Munich, Fraunhofer-Gesellschaft Institute for 
Process Automation and AIT as well as others 
collaborated to create the CV HAZOP. Figure Fig. 3 
shows some examples of identified criticalities. 
During the domain analysis, those criticalities are 
identified that could be relevant for the given application. 
During this selection process, it is often feasible to also 
consider relevant characteristics of the CV solution to be 
tested. 
 

 

  

Fig. 3. Example for typical criticalities: duplication due to mirroring, 
multiple shadows, confusing uniform texture 

D.  Parameter Values Selection and 3D-Scenes 
Generation 

The domain model is represented by the so-called domain 
space, a high-dimensional parameter space where each of 
the domain parameters, e.g. object positions or intensity 
of light sources, establish its dimensions. A point in this 
space represents a very specific 3D-scene; if the 
parameters describing the observer (sensor) are included, 
it even specifies a certain view. 
Theoretically, sampling the domain space with a 
sufficiently high density, yields test cases that contain all 
typical and critical situations for the given application. 
However, this does not answer when the sampling 
density is sufficient and also would generate an unknown 
fraction of redundant test data, thus violating the goal of 
creating an efficient test set. While even an outline of the 
whole sampling process as implemented is not possible 
here due to space limits, essential considerations are 
summarized below. 

 To minimize the risk of missing relevant 
parameter value combinations due to too regular 
(e.g. on periodic raster positions) or too irregular 
(e.g. using Monte Carlo methods) sampling, 
sampling methods are used that provide low 
geometric discrepancy “lowD” ([4]). 

 Since these methods work best in spaces of 
limited dimensionality, a somewhat hierarchical 
approach of splitting the domain space is used. 
First, the so-called “cardinality space” is lowD-
sampled, which defines which and how many 
objects are added to a 3D-scene. This results in a 
parameter space specific for a family of 3D-
scenes containing the same entities with 



 

different values chosen for their parameters (e.g. 
location and rotation).  

 This space is split into lower-dimensional 
subspaces that are as mutually independent as 
possible; e.g. parameters describing one object 
are collected in a common subspace. Each of 
these subspaces is lowD-sampled, and the 
resulting points combined under consideration of 
constraints (including physical laws such as that 
two solid bodies cannot intersect). 

These considerations address “domain coverage”, i.e. to 
find scenes typical for a given application. For “criticality 
coverage”, further steps are carried out. One goal of the 
framework is to create test data that allows establishing 
characterization plots with respect to certain criticalities. 
For instance, by incrementally modifying the distance of 
an object or its occlusion fraction by another object, the 
sensibility of the SUT with respect to these aspects can 
objectively be assessed. 
Another step, “criticality injection”, considers that 
criticalities often concern interrelations between scene 
entities (objects, light sources, the observer etc.). Since 
the specified domain model is internally transformed into 
a Satisfiability Modulo Theory (SMT) expression ([3]), it 
is possible to generate solutions, i.e. 3D scenes, which 
contain the respective criticalities. 
The decision when the sampling density is sufficient, i.e. 
when sampling can be stopped, is addressed in the next 
section. It should be noted that lowD-sampling 
algorithms are used that produce point sequences which 
are continuously lowD-distributed. Hence, sample point 
generation can be stopped at any time without violating 
the lowD property. 

E.  Parameter Rendering and Test Data Selection 

The following approach is taken to avoid redundancy in 
the generated test data. In addition, this approach also 
provides a convergence criterion to detect when the test 
data generation process is finished (i.e. when we have 
generated “enough” test cases): 

 Each individual 3D-scene is rendered using a 
high speed low-quality rendering engine. This 
step is synonymous to simulating a pin-hole 
camera that captures the respective 3D-scene. 
Figure Fig. 5 shows a wire-frame representation 
of a typical 3D model of a 3D-scene depicting a 
kitchen with a filled table as well as the low-
quality rendering of the same scene. 

 For each output image, a custom-build rendering 
system calculates an image characterization 
vector (also called trait vector) that can be used 
to describe the content of the output image in a 
very condensed and comparable form. All 
entries of the trait vector are normalized to the 
range [0;1]. This allows comparing two such 
vectors by calculating the distance between them 
(e.g. Euclidian distance) and thus allows to 
objectively measure similarities between 
different images based on the shown content. 
This characterization is possible due to the 

nature of having complete control and insight 
over the artificial generated input 3D-scene. 
Each pixel of the output image can be mapped 
unambiguously to the objects, lights or media 
that created it. Some examples for entries for the 
trait vector are: Proportion of the image that 
shows a specific object, proportion of surface of 
an object that is visible, orientation of an object 
that is visible in the current image, number or 
size of glare spots visible in the image, etc. 
The term trait vector was chosen to prevent its 
confusion with the term feature vector, a term 
used in CV to describe a description vector that 
describes a specific point within an image using 
pixel based metrics. An important difference 
here is that feature vectors have no background 
knowledge of the underlying objects that created 
those pixels, but can only work on the numerical 
pixel values themselves. The trait vector is filled 
with defined meta-knowledge stemming from 
the domain description thus making its entries 
correct by definition. 

 The trait vectors of all candidates generated so 
far are clustered in the trait vector space with 
conventional clustering methods (see Figure Fig. 

4). Convergence is assumed as soon as the 
adding of new candidates does not change the 
clustering over a predefined number of new 
candidates. Correspondingly a sufficient 
sampling density of the domain space is reached 
and no additional test cases have to be 
generated. 

 From each cluster, a central representative is 
chosen (see Fig. 8 and Fig. 9. For these test cases, 
the individual test images are rendered using a 
high-quality rendering engine and also the 
necessary GT is generated (see Fig. 6). 
Figure Fig. 5 shows the difference in image 
realism of a low-quality and a high-quality 
rendering as well as a comparison to an actual 
real world camera image. The redundancy 
reduction step is also crucial to reduce the 
execution time of the test data generation. The 
low quality rendering of a scene, the calculation 
of the trait vector and the clustering can be done 
in less than a 10th of a second while the high 
quality rendering can take up to an hour 
depending on the image size and the required 
level of realism. This huge speed factor explains 
why two different levels of realism are used in 
our approach. 

 Nearly all rendering engines simulate a perfect 
pin-hole camera. A dedicated post-processing 
pipeline created by the Technical University of 
Brno is used to simulate real-world camera 
effects like depth of field and lens distortions 
(see [9] for a description). 

 



 

   

Fig. 4. Reducing redundancy by using central representatives of 
clusters11 

 
 

 

 
 
Fig. 5. Comparison of the same scene: wire-frame representation, low- 
quality rendering, high-quality rendering and a genuine camera image 

 

 

Fig. 6. Test data examples 

III.  RESULTS 

In first trail runs the VITRO framework was used to 
generate test cases for a use case defined in the R3-COP 
project. The task for a robotic platform is the detection 
and identification of different objects as well as their 
orientation that are placed on a kitchen table. This 
information is used to allow the robot to tidy up the table 
autonomously. In one test run, the different cardinalities 
and types of objects (e.g. cans and boxes) as well as 
different positions and orientations of the objects were 
tested. Figure Fig. 7. Effect of lowD-based domain space sampling 

(of cardinality and parameters of objects)Fig. 7 shows a selection 
from this data set. All mentioned parameters are sampled 
using a lowD-based approach as described in section II.  
D.   creating a diverse and challenging data set. A more 
simple case was used for testing the clustering and 
convergence criteria described in section II.  E.   Here 

                                                           
11 http://people.revoledu.com/kardi/tutorial/kMean/Image 

an identical 3D-scenery is sampled from various camera 
positions and camera orientations. A total of over 1000 
different configurations were generated and the different 
clustering schemes and parameters were tested. Fig. 8 
shows a selection from this dataset where borders of the 
same style indicate the correspondence to the same 
cluster with a clustering setting that enforced a total of 
nine clusters. Figure Fig. 8 shows the central 
representatives of each of these nine clusters. 
 

Fig. 7. Effect of lowD-based domain space sampling (of cardinality and 
parameters of objects) 

 

Fig. 8. Central representatives of each cluster shown in Fehler! 
Verweisquelle konnte nicht gefunden werden. using the same frame 

borders 

 

IV.  CONCLUSIONS 

The presented approach VITRO for the model-based 
generation of test data for assessing the robustness of 
computer vision solutions with respect to a certain 
application has a number of strengths, challenges, and 
degrees of freedom. 

Strengths: 
 Difficult and dangerous scenes can be generated 

that would be very hard to arrange in reality. 
 Typical and critical situations contained in test 

data can be measured. 
 Ground truth can easily and objectively be 

generated. 
Challenges: 
 Creation or capturing of 3D-models of objects 

that are sufficiently precise for allowing realistic 



 

 

Fig. 9. Example of generated scenes, same borders indicate same cluster 

rendering can be very expensive.  
 Formalization of constraints and criticalities can 

become a complex task. 
 Rendering should avoid rendering artifacts but 

include sensing artifacts (e.g. optical aberration, 
thermal noise); i.e. it shall be realistic for the 
SUT rather than for humans. 

Degrees of freedom: 
 Selection of criticalities.  
 Selection of image characterization properties. 
 Clustering in characterization vector space. 
 Convergence criterion for clustering. 

 
 

Further planned activities are: 
 

 Gaining experience on the listed degrees of 
freedom. 

 Support of SUT development. Test data could 
not only be generated for testing, but already for 
supporting its development by early provision of 
smart and relevant test data. 

 Generating training data for learning algorithms. 
This needs to consider scene probabilities. 

 Continuous test data generation. Provision of 
image sequences (videos) not only needs to 
include time, but may also require to consider 
behavior; possible even in closed-loop testing 
where the SUT is part of a sys-tem that, by 
reacting on the test data, changes the 
environment, which again has to be considered 
in the next test data generation step. 

 Get the provided approach accepted for 
certifying computer vision solutions. 
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