

VITRO – Model Based Vision Testing for Robustness

Oliver Zendel1, Wolfgang Herzner2, Markus Murschitz3
1AIT Austrian Institute of Technology GmbH, Austria, oliver.zendel@ait.ac.at

2AIT Austrian Institute of Technology GmbH, Austria, wolfgang.herzner@ait.ac.at
3AIT Austrian Institute of Technology GmbH, Austria, markus.murschitz@ait.ac.at

 (Tel: +43-50550-4261, Fax: +43-50550-4150)

Abstract-- This paper introduces a model-based approach

for testing the robustness of computer vision solutions with
respect to a given task or application. The work is
motivated by the observation that today testing computer
vision components is mostly a manual and heuristic task. In
general, recorded test images are used to assess whether the
solution yields the correct output. This approach suffers
from at least two deficiencies: (i) test data often need to be
manually annotated with the expected output (“ground
truth”), which is expensive and subjective; (ii) it is hard to
assure that all situational aspects are included (e.g.
backlight or occlusions) that can hamper the correct
operation of the vision component. Our approach enables to
generate test data with a measurable coverage of optical
situations typical and critical for a given application, and
also generates correct ground truth with no manual effort.

Index Terms--computer vision testing, robustness testing,
model-based test case generation, validation

I. INTRODUCTION

Image processing techniques used in vision sensors are a
crucial component for enabling autonomous systems to
solve basic tasks of manipulating and navigating in an
environment. In scenarios where the systems have to
coexist with humans (e.g. robots taking care of the elder
or autonomous cars in public traffic) all of their
components should be certified to ensure that they
operate safely. However, still today no general
methodology exists for testing the robustness of vision
components with a measurable coverage of scenes and
situational aspects typical and critical for a given
application. These coverage metrics are crucial to allow
the certification of vision components. Public authorities
require for the commercial application of safety-critical
systems their safety certification. Due to the current lack
of viable means to certify visual components or whole
systems that depend on such components, the broad
usage of autonomous systems in our everyday life is still
highly restricted and hampered. It is thus clear that
advances in methodology for the certification of vision
components at this stage are as important to its
development as improving the robustness of vision
components and algorithms themselves.
When assessing the quality of a robot vision component
(system under test; SUT) it is less an issue whether it
produces the intended result; e.g. it is easy to check
whether an edge detection algorithm actually outputs
edges. It is also less complicated as conventional V&V
techniques applicable to generic algorithms and systems
can be used for the verification of vision algorithm

implementation just as well (e.g. checking for the absence
of faults that could lead to access violation, deadlock, or
timeouts). The main question is how robust a solution is,
i.e. how well it copes with the huge number of challenges
present in the input data, e.g. shadows, reflections,
occlusions, as well as artifacts emanating in the sensor,
e.g. thermal noise – which we call criticalities.
Here the vision algorithm presents a very different
challenge than the generic algorithm case. This is due to
the immense number of possible different input images
and the hard task of finding equivalence classes among
images. For instance, with a given set of images it is hard
to come up with an equivalence class that shows blue cars
or no trees.
Today, in most cases recorded test images are used for
validation from two kinds of sources:
 On the one side, there exist a lot of publicly available
data sets (e.g. the Brodatz texture album1, the Middlebury
data sets2 or the KITTI Vision Benchmark Suite3 of
stereo images for disparity map testing, or the
CAVIAR4and “Imageparsing.com” (IP)5 data for indoor
person tracking). In general, such test sets do not address
a certain application. They are primarily used for
benchmarking rather than for assessing application
specific robustness. But even if they are application
specific (e.g. the Color FERET Database, USA6 for face
recognition), they do not give an objective measure of the
covered criticalities.
 On the other side, test data is recorded especially for a
given application. For instance, in the course of the ECV
[7] project about 600.000 images were recorded for the
testing of automatic plant and weed localization. For the
quality assessment of welding robots [8], about 100.000
images were recorded. Despite their large number, a
measurable coverage of criticalities is not available.
Finally, the expected output (or ground truth, GT) needs
to be provided for the test data, in order to assess the
SUTs response on the test input. This is usually done
manually, which is expensive and at least subjective if
not error prone. For instance, for the 60 test images used
for comparing edge detectors in ([1]), several experts
generated the GT manually, with clearly different results
(see Fig. 1) and corresponding different assessments of
the tested algorithms.

1 http://www.ux.uis.no/~tranden/brodatz.html
2 http://vision.middlebury.edu/stereo/
3 http://www.cvlibs.net/datasets/kitti/
4 http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
5 http://www.imageparsing.com/frame/MainShow1.html
6 http://face.nist.gov/colorferet/

Fig. 1. Variation example in GT specified manually by two different
persons. From ([1])

In order to overcome these deficiencies, we developed an
approach for generating test data (both stimuli, i.e.
images, and expected responses, i.e. GT) from models.
This approach called VITRO (VIson Testing for
Robustness) is justified by a number of additional
observations:

 Computer graphics has reached a maturity
status that allows to render realistic images;

 Criticalities can be included explicitly in
generated data;

 Scenes can be created which would be too
difficult or dangerous to be arranged in
reality.

The resulting test data set should contain little
redundancy and a measurable amount of domain as well
as criticality coverage.
In the next section, this approach is outlined, while
section II. presents VITRO, our new approach for
model-based test case generation. Section III.
contains some first preliminary results. Finally Section
IV. contains a summary and some outlook.

II. THE VITRO APPROACH

A. General Approach

The VITRO model-based test case generation process for
computer vision is performed in these steps:

1. A domain analysis identifies objects that can
appear in scenarios of the given application,
together with their properties and
relationships; all this information is specified
in the so-called domain model.

2. Criticalities that should be included in the test
data are either derived from the domain
analysis, and/or selected from a catalogue of
criticalities.

3. 3D-scenes are automatically derived from the
domain model such that both the domain
space and the criticalities are covered.

4. Images are rendered from 3D-scenes and
characterizations of the rendered images are
computed.

5. The images are clustered according to the
characterization vector and only the central
representatives of each cluster are used as test
data to minimize redundancy

6. GT and high quality renderings are generated
for the representatives, camera effects are
added by a post-processing step.

Figure Fig. 2 illustrates this process. The individual
ingredients and steps are described in the following
chapters.

Fig. 2. Test case generation process

B. Domain Model

The domain model captures all aspects and information
about the targeted application domain that are relevant for
test image generation. The act of creating a specific
domain model is called domain analysis. The domain
model includes:

 Objects and their categories. For instance,
objects and categories typical for an indoor
application in home kitchens are: stoves,
sideboards, tables, chairs, dishes, cups, pots,
lamps, coffee machines, towels, doors, windows
etc.

 Object properties specify shape and size,
perhaps also variability-aspects (e.g. whether the
object is flexible, and to what degree), color,
texture, transparency, reflectance etc.

Domain
Model

Domain
(Application)
Knowledge

Param.
Values

Selection

3D-scenes

Criticalities
Catalogue

Criticalities
Selection

Pre-
Rendering

Test Image
Candidates

Test Image
Characterisation

Image
Selection

Final
Rendering

Test Images Ground
Truth

Data Flow

Knowledge
Flow
1:1 Linking

 Illumination. The light emitted from light
sources has to be specified with respect to
intensity, color, and distribution of light in
different directions. Light sources, which can be
seen by the SUT, have additionally to be
modeled as objects.

 Media properties. If media such as air or water
can influence the visual appearance of scenes,
they have to be included in the domain model,
characterized by properties such as dimming
factor – e.g. fog, refraction index, or embedded
particles – e.g. rain or snow.

 Relationships and constraints. Relationships
describe how two or more objects are related to
each other, e.g. “lid A belongs to pot B”.
Constraints place restrictions on objects and
properties, e.g. that cups are placed with their
bottom plane on horizontal surfaces, that chairs
are aside the table, or that an analogue clock
always has one hour hand and one minute hand,
and optionally one additional second hand. A
further aspect would be behavior, addressing
motion and interactions. Behavior introduces the
complex element of timing and conditional
sequences, which are neglected during the
course of this work, but will be addressed in
future work.

The domain model is encoded as XML files in order to
benefit from the huge amount of standardized tools. It is
extensively using the xml-specifications of xinclude7,
xpath 8 , and some xslt 9 transformations.
xinclude supports model reuse and thus helps to
reduce the high costs of domain model specification.
Objects geometry and other properties, e.g. textures, are
encoded using encodings well known in computer
graphics, e.g. COLLADA 10 . Finally, so-called object
generators are used to represent “generic objects” of a
certain kind. Controlled by a rather small number of
parameters, they allow generate a large variety of similar
objects, e.g. cups or clouds.

C. Criticalities

In order to identify as many potential criticalities as
possible, a so-called “CV HAZOP” has been carried out.
For that purpose, a hazard analysis technique proven by
the V&V community called HAZOP [5] was adapted by
extending the set of usual guidewords with those that
were considered appropriate (e.g. spatial (a)periodic) and
applied to the generic vision algorithm. The “system” –
including visible objects, light sources, media (e.g. air
and its pollution), and the sensor (optics and recoding
unit) – was modeled by an information-oriented
approach. See [6] for a thorough description of this work
including the complete resulting list of identified
criticalities.

7 http://www.w3.org/TR/xinclude/
8 http://www.w3.org/TR/xpath/
9 http://www.w3.org/TR/xslt/
10 http://www.khronos.org/collada/

More than one thousand visual “criticalities” (i.e.
situations and effects that can reduce the output quality of
a CV algorithm) were identified and collected in a
catalogue. Examples are “mirrors fake additional light
sources” or “one object is split into multiple objects
(fragments) because parts of the object are covered by a
different object or are outside of the view”. Experts from
Siemens Munich, Fraunhofer-Gesellschaft Institute for
Process Automation and AIT as well as others
collaborated to create the CV HAZOP. Figure Fig. 3
shows some examples of identified criticalities.
During the domain analysis, those criticalities are
identified that could be relevant for the given application.
During this selection process, it is often feasible to also
consider relevant characteristics of the CV solution to be
tested.

Fig. 3. Example for typical criticalities: duplication due to mirroring,
multiple shadows, confusing uniform texture

D. Parameter Values Selection and 3D-Scenes
Generation

The domain model is represented by the so-called domain
space, a high-dimensional parameter space where each of
the domain parameters, e.g. object positions or intensity
of light sources, establish its dimensions. A point in this
space represents a very specific 3D-scene; if the
parameters describing the observer (sensor) are included,
it even specifies a certain view.
Theoretically, sampling the domain space with a
sufficiently high density, yields test cases that contain all
typical and critical situations for the given application.
However, this does not answer when the sampling
density is sufficient and also would generate an unknown
fraction of redundant test data, thus violating the goal of
creating an efficient test set. While even an outline of the
whole sampling process as implemented is not possible
here due to space limits, essential considerations are
summarized below.

 To minimize the risk of missing relevant
parameter value combinations due to too regular
(e.g. on periodic raster positions) or too irregular
(e.g. using Monte Carlo methods) sampling,
sampling methods are used that provide low
geometric discrepancy “lowD” ([4]).

 Since these methods work best in spaces of
limited dimensionality, a somewhat hierarchical
approach of splitting the domain space is used.
First, the so-called “cardinality space” is lowD-
sampled, which defines which and how many
objects are added to a 3D-scene. This results in a
parameter space specific for a family of 3D-
scenes containing the same entities with

different values chosen for their parameters (e.g.
location and rotation).

 This space is split into lower-dimensional
subspaces that are as mutually independent as
possible; e.g. parameters describing one object
are collected in a common subspace. Each of
these subspaces is lowD-sampled, and the
resulting points combined under consideration of
constraints (including physical laws such as that
two solid bodies cannot intersect).

These considerations address “domain coverage”, i.e. to
find scenes typical for a given application. For “criticality
coverage”, further steps are carried out. One goal of the
framework is to create test data that allows establishing
characterization plots with respect to certain criticalities.
For instance, by incrementally modifying the distance of
an object or its occlusion fraction by another object, the
sensibility of the SUT with respect to these aspects can
objectively be assessed.
Another step, “criticality injection”, considers that
criticalities often concern interrelations between scene
entities (objects, light sources, the observer etc.). Since
the specified domain model is internally transformed into
a Satisfiability Modulo Theory (SMT) expression ([3]), it
is possible to generate solutions, i.e. 3D scenes, which
contain the respective criticalities.
The decision when the sampling density is sufficient, i.e.
when sampling can be stopped, is addressed in the next
section. It should be noted that lowD-sampling
algorithms are used that produce point sequences which
are continuously lowD-distributed. Hence, sample point
generation can be stopped at any time without violating
the lowD property.

E. Parameter Rendering and Test Data Selection

The following approach is taken to avoid redundancy in
the generated test data. In addition, this approach also
provides a convergence criterion to detect when the test
data generation process is finished (i.e. when we have
generated “enough” test cases):

 Each individual 3D-scene is rendered using a
high speed low-quality rendering engine. This
step is synonymous to simulating a pin-hole
camera that captures the respective 3D-scene.
Figure Fig. 5 shows a wire-frame representation
of a typical 3D model of a 3D-scene depicting a
kitchen with a filled table as well as the low-
quality rendering of the same scene.

 For each output image, a custom-build rendering
system calculates an image characterization
vector (also called trait vector) that can be used
to describe the content of the output image in a
very condensed and comparable form. All
entries of the trait vector are normalized to the
range [0;1]. This allows comparing two such
vectors by calculating the distance between them
(e.g. Euclidian distance) and thus allows to
objectively measure similarities between
different images based on the shown content.
This characterization is possible due to the

nature of having complete control and insight
over the artificial generated input 3D-scene.
Each pixel of the output image can be mapped
unambiguously to the objects, lights or media
that created it. Some examples for entries for the
trait vector are: Proportion of the image that
shows a specific object, proportion of surface of
an object that is visible, orientation of an object
that is visible in the current image, number or
size of glare spots visible in the image, etc.
The term trait vector was chosen to prevent its
confusion with the term feature vector, a term
used in CV to describe a description vector that
describes a specific point within an image using
pixel based metrics. An important difference
here is that feature vectors have no background
knowledge of the underlying objects that created
those pixels, but can only work on the numerical
pixel values themselves. The trait vector is filled
with defined meta-knowledge stemming from
the domain description thus making its entries
correct by definition.

 The trait vectors of all candidates generated so
far are clustered in the trait vector space with
conventional clustering methods (see Figure Fig.

4). Convergence is assumed as soon as the
adding of new candidates does not change the
clustering over a predefined number of new
candidates. Correspondingly a sufficient
sampling density of the domain space is reached
and no additional test cases have to be
generated.

 From each cluster, a central representative is
chosen (see Fig. 8 and Fig. 9. For these test cases,
the individual test images are rendered using a
high-quality rendering engine and also the
necessary GT is generated (see Fig. 6).
Figure Fig. 5 shows the difference in image
realism of a low-quality and a high-quality
rendering as well as a comparison to an actual
real world camera image. The redundancy
reduction step is also crucial to reduce the
execution time of the test data generation. The
low quality rendering of a scene, the calculation
of the trait vector and the clustering can be done
in less than a 10th of a second while the high
quality rendering can take up to an hour
depending on the image size and the required
level of realism. This huge speed factor explains
why two different levels of realism are used in
our approach.

 Nearly all rendering engines simulate a perfect
pin-hole camera. A dedicated post-processing
pipeline created by the Technical University of
Brno is used to simulate real-world camera
effects like depth of field and lens distortions
(see [9] for a description).

Fig. 4. Reducing redundancy by using central representatives of
clusters11

Fig. 5. Comparison of the same scene: wire-frame representation, low-
quality rendering, high-quality rendering and a genuine camera image

Fig. 6. Test data examples

III. RESULTS

In first trail runs the VITRO framework was used to
generate test cases for a use case defined in the R3-COP
project. The task for a robotic platform is the detection
and identification of different objects as well as their
orientation that are placed on a kitchen table. This
information is used to allow the robot to tidy up the table
autonomously. In one test run, the different cardinalities
and types of objects (e.g. cans and boxes) as well as
different positions and orientations of the objects were
tested. Figure Fig. 7. Effect of lowD-based domain space sampling

(of cardinality and parameters of objects)Fig. 7 shows a selection
from this data set. All mentioned parameters are sampled
using a lowD-based approach as described in section II.
D. creating a diverse and challenging data set. A more
simple case was used for testing the clustering and
convergence criteria described in section II. E. Here

11 http://people.revoledu.com/kardi/tutorial/kMean/Image

an identical 3D-scenery is sampled from various camera
positions and camera orientations. A total of over 1000
different configurations were generated and the different
clustering schemes and parameters were tested. Fig. 8
shows a selection from this dataset where borders of the
same style indicate the correspondence to the same
cluster with a clustering setting that enforced a total of
nine clusters. Figure Fig. 8 shows the central
representatives of each of these nine clusters.

Fig. 7. Effect of lowD-based domain space sampling (of cardinality and
parameters of objects)

Fig. 8. Central representatives of each cluster shown in Fehler!
Verweisquelle konnte nicht gefunden werden. using the same frame

borders

IV. CONCLUSIONS

The presented approach VITRO for the model-based
generation of test data for assessing the robustness of
computer vision solutions with respect to a certain
application has a number of strengths, challenges, and
degrees of freedom.

Strengths:
 Difficult and dangerous scenes can be generated

that would be very hard to arrange in reality.
 Typical and critical situations contained in test

data can be measured.
 Ground truth can easily and objectively be

generated.
Challenges:
 Creation or capturing of 3D-models of objects

that are sufficiently precise for allowing realistic

Fig. 9. Example of generated scenes, same borders indicate same cluster

rendering can be very expensive.
 Formalization of constraints and criticalities can

become a complex task.
 Rendering should avoid rendering artifacts but

include sensing artifacts (e.g. optical aberration,
thermal noise); i.e. it shall be realistic for the
SUT rather than for humans.

Degrees of freedom:
 Selection of criticalities.
 Selection of image characterization properties.
 Clustering in characterization vector space.
 Convergence criterion for clustering.

Further planned activities are:

 Gaining experience on the listed degrees of
freedom.

 Support of SUT development. Test data could
not only be generated for testing, but already for
supporting its development by early provision of
smart and relevant test data.

 Generating training data for learning algorithms.
This needs to consider scene probabilities.

 Continuous test data generation. Provision of
image sequences (videos) not only needs to
include time, but may also require to consider
behavior; possible even in closed-loop testing
where the SUT is part of a sys-tem that, by
reacting on the test data, changes the
environment, which again has to be considered
in the next test data generation step.

 Get the provided approach accepted for
certifying computer vision solutions.

ACKNOWLEDGMENT

This work has been funded by the ARTEMIS project
R3-COP (Resilient Reasoning Robotic Co-operating
Systems), project number 100233.

REFERENCES

[1] Kevin Bowyer, Christine Kranenburg, and Sean
Dougherty: “Edge Detector Evaluation Using Empirical
ROC Curves”. In P. J. Flynn, A. Hoover, P. J. Phillips
(eds.): Computer Vision and Image Understanding 84, 1–4
(2001); doi:10.1006/cviu.2001.0948; available online at
http://www.idealibrary.com

[2] R. M. Haralick, K. Shanmugam, I. Dinstein: “Textural
Features for Image Classification”. Systems, Man and
Cybernetics, IEEE Transactions 3(6), 610–1621 (1973);
doi: 10.1109/TSMC.1973.4309314

[3] Daniel Kroening, Ofer Strichman: “Decision Procedures –
An Algorithmic Point of View”. Springer, Berlin
Heidelberg, 2008. ISBN 978-3-540-741ß04-6

[4] Jiri Matousek: “Geometric Discrepancy – An Illustrated
Guide”. Algorithms and Combinatorics Series, Vol.18;
Springer, Berlin Heidelberg, 1999. ISBN 3-540-65528-X

[5] Felix Redmill, Morris Chudleigh, and James Catmur;
“System Safety: HAZOP and Software HAZOP”. John
Wiley & Sons, 1999; ISBN: 978-0-471-98280-7

[6] Oliver Zendel (ed.), Markus Murschitz (ed.): “Criticality
Analysis for Computer Vision Algorithms – CV HAZOP”.
R3-COP deliverable D4.2.3, 2012; available online at
http://www.r3-cop.eu/ under “Download”.

[7] Croonen, Gerardus, and Csaba Beleznai: "Detection of
near-regular object configurations by elastic graph search."
Computer Vision and Graphics. Springer Berlin
Heidelberg, 2010. 283-291.

[8] Fronthaler, H., Croonen, G., Biber, J., Heber, M., and
Rüther, M.:„An online quality assessment framework for
automated welding processes”. The International Journal
of Advanced Manufacturing Technology, 1-10, 2013

[9] Michal Kučiš and Pavel Zemčík: "Simulation of Camera
Features". Proceedings of CESCG 2012: The 16th Central
European Seminar on Computer Graphics, Slovakia, 2012

