References

Partners

[Baier e.a. 2008]Christel Baier, Joost-Pieter Katoen: "Principles of Model Checking". MIT Press 2008; ISBN 978-0262026499
[Bulya e.a. 2014]Alena Bulyha, Wolfgang Herzner, Markus Murschitz, Oliver Zendel: "Low-Discrepancy Distribution of Points on Arbitrary Polygonal 3D-Surfaces". In Proc. of GRAPP 2014 (9th Int. Conf. on Computer Graphics and Applications), 5.-8.1.2014, Lissabon/Portugal; pp.79-87, ISBN 978-989-758-002-4
[Clarke e.a. 1999]Edmund M. Clarke, Orna Grumberg, Doron Peled: "Model Checking". MIT Press, 1999; ISBN 978-0262032704
[Gallier 2015]Jean H. Gallier: "Logic for Computer Science: Foundations of Automatic Theorem Proving". Dover Publ. 2nd ed. 2015; ISBN-10: 0-468-78082-1
[IEC 61508]IEC 61508:2010 "Functional safety of electrical/electronic/programmable electronic safety-related systems". International Electrotechnical Commission, 2010
[IEC/TS 61496]IEC/TS 61496-4:2015 "Safety of machinery – Electro-sensitive protective equipment – Part 4: Particular requirements for equipment using vision based protective devices (VBPD)". International Electrotechnical Commission 2015
[ISO 26262]ISO 26262 "Road vehicles – Functional safety" International Standardisation Organization 2011-2012
[Maier e.a. CVPR WS 2017]J. Maier, M. Humenberger, O. Zendel, M. Vincze. Ground Truth Accuracy and Performance of the Matching Pipeline. In IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops), 2017
[Matousek 2010]Jiri Matousek: "Geometric Discrepancy: An Illustrated Guide (Algorithms and Combinatorics)". Springer 2010 , ISBN: 3642039413
[Möller e.a. 1993]K.-H. Möller, D. J. Paulish: "Software-Metriken in der Praxis"; Oldenbourg (München), 1993
[Murschitz e.a. 2016]Markus Murschitz, Oliver Zendel, Martin Humenberger, Christoph Sulzbachner, Gustavo Fernández Domınguez, "An Experience Report on Requirements-Driven Model-Based Synthetic Vision Testing", Workshop on Quality Assurance in Computer Vision at 28th International Conference on Testing Software and Systems (ICTSS) 2016
[Oezdemir e.a. 2006]B. Özdemir, S. Aksoy, S. Eckert, M. Pesaresi, and D. Ehrlich: “Performance
measures for object detection evaluation”. Pattern Recognition Letters, vol. 31,
no. 10, pp. 1128–1137, Jul. 2010
[Ponce e.a. 2006]J. Ponce, T. L. Berg, M. Everingham, D. A. Forsyth, M. Hebert, S. Lazebnik, M. Marszalek, C. Schmid, B. C. Russell, A. Torralba, et al. "Dataset issues in object recognition." In Toward category-level object recognition, pp.29-48, Springer 2006
[Pinto e.a. 2008]N. Pinto, D. D. Cox, and J. J. DiCarlo: "Why is real-world visual object recognition hard?" PLoS Comput. Biol., 4(I):e27, 01/2008
[Torralba e.a. 2011]A. Torralba and A. A. Efros. "Unbiased look at dataset bias." In Computer Vision and Pattern Recognition (CVPR), 2011 IEE Conf. on, pp.1521-1528, IEEE 2011
[Zendel e.a. ISR 2013]O. Zendel, W. Herzner, M. Murschitz: "VITRO – Model Based Vision Testing for Robustness." Proc. of ISR 2013 (International Symposium on Robotics), 24.-26.Oct.2013, Seoul/Korea
[Zendel e.a. ICCV 2015]O. Zendel, M. Murschitz, M. Humenberger, W. Herzner. "CV-HAZOP: Introducing Test Data Validation for Computer Vision." International Conference on Computer Vision (ICCV), 2015 (pre-version)
[Zendel e.a. IJCV 2017]Zendel, Oliver, et al. "How Good Is My Test Data? Introducing Safety Analysis for Computer Vision." International Journal of Computer Vision (2017): 1-15.
[Zendel e.a. CVPR 2017]Zendel, Oliver and Honauer, Katrin and Murschitz, Markus and Humenberger, Martin and Fernandez Dominguez, Gustavo. "Analyzing Computer Vision Data - The Good, the Bad and the Ugly." The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017 [Supplemental Material]
[Zendel e.a. ECCV 2018]Zendel, Oliver and Honauer, Katrin and Murschitz, Markus and Steininger, Daniel and Fernandez Dominguez, Gustavo. "WildDash - Creating Hazard-Aware Benchmarks." The European Conference on Computer Vision (ECCV), 2018.
[Zendel e.a. CVPRW 2019]Oliver Zendel, Markus Murschitz, Marcel Zeilinger, Daniel Steininger, Sara Abbasi, and Csaba Beleznai. "RailSem19: A Dataset for Semantic Rail Scene Understanding." Conference on Computer Vision and Pattern Recognition (CVPR) Workshop, 2019.